Optimal Design of PMSM Based on Automated Finite Element Analysis and Metamodeling
Yong-Min You
Additional contact information
Yong-Min You: Department of Automotive Engineering, Honam University, Gwangju 62399, Korea
Energies, 2019, vol. 12, issue 24, 1-18
Abstract:
To obtain accurate optimal design results in electric machines, the finite element analysis (FEA) technique should be used; however, it is time-consuming. In addition, when the design of experiments (DOE) is conducted in the optimal design process, mechanical design, analysis, and post process must be performed for each design point, which requires a significant amount of design cost and time. This study proposes an automated DOE procedure through linkage between an FEA program and optimal design program to perform DOE easily and accurately. Parametric modeling was developed for the FEA model for automation, the files required for automation were generated using the macro function, and the interface between the FEA and optimal design program was established. Shape optimization was performed on permanent magnet synchronous motors (PMSMs) for small electric vehicles to maximize torque while maintaining efficiency, torque ripple, and total harmonic distortion of the back EMF using the built-in automation program. Fifty FEAs were performed for the experimental points selected by optimal Latin hypercube design and their results were analyzed by screening. Eleven metamodels were created for each output variable using the DOE results and root mean squared error tests were conducted to evaluate the predictive performance of the metamodels. The optimization design based on metamodels was conducted using the hybrid metaheuristic algorithm to determine the global optimum. The optimum design results showed that the average torque was improved by 2.5% in comparison to the initial model, while satisfying all constraints. Finally, the optimal design results were verified by FEA. Consequently, it was found that the proposed optimal design method can be useful for improving the performance of PMSM as well as reducing design cost and time.
Keywords: automation; finite element analysis; PMSM; DOE; optimization; metamodeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4673/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4673/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4673-:d:295677
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().