EconPapers    
Economics at your fingertips  
 

Determining the Effect of Different Heat Treatments on the Electrical and Morphological Characteristics of Polymer Solar Cells

Jun Young Kim
Additional contact information
Jun Young Kim: Department of Semiconductor Engineering, Engineering Research Institute (ERI), Gyeongsang National University, 501 Jinju-daero, Jinju, Gyeongnam 52828, Korea

Energies, 2019, vol. 12, issue 24, 1-8

Abstract: The device characteristics of polymer solar cells can be improved through an annealing process. This is especially true of the carrier mobility and the light absorption of P3HT:PCBM, which improves considerably after the annealing process. In the standard structure using indium-tin-oxide (ITO) as an anode, most studies have focused on the post-annealing process, where thermal annealing is performed after device fabrication. This work reports the effects of different annealing methods for inverted polymer solar cells, using ITO as a cathode. Similar levels of light absorption and P3HT crystallinity were obtained regardless of the annealing procedure in the inverted structure. However, compared with the post-annealed device, the pre-annealed device, which was thermally annealed after deposition of the P3HT:PCBM film, exhibited better charge extraction, owing to the superior device resistances and larger MoO 3 grain size. Therefore, the pre-annealing method yields better performance than the post-annealing method.

Keywords: Inverted polymer solar cell; Heat treatment; Morphology; Impedance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4678/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4678/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4678-:d:295798

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:24:p:4678-:d:295798