Research on Fluid Flow and Permeability in Low Porous Rock Sample Using Laboratory and Computational Techniques
Paulina Krakowska and
Paweł Madejski
Additional contact information
Paulina Krakowska: Faculty of Geology, Geophysics and Environmental Protection, Department of Geophysics, AGH University of Science and Technology, 30-059 Kraków, Poland
Paweł Madejski: Faculty of Mechanical Engineering and Robotics, Department of Power Systems and Environmental Protection Facilities, AGH University of Science and Technology, 30-059 Kraków, Poland
Energies, 2019, vol. 12, issue 24, 1-17
Abstract:
The paper presents results of fluid flow simulation in tight rock being potentially gas-bearing formation. Core samples are under careful investigation because of the high cost of production from the well. Numerical simulations allow determining absolute permeability based on computed X-ray tomography images of the rock sample. Computational fluid dynamics (CFD) give the opportunity to use the partial slip Maxwell model for permeability calculations. A detailed 3D geometrical model of the pore space was the input data. These 3D models of the pore space were extracted from the rock sample using highly specialized software poROSE (poROus materials examination SoftwarE, AGH University of Science and Technology, Kraków, Poland), which is the product of close cooperation of petroleum science and industry. The changes in mass flow depended on the pressure difference, and the tangential momentum accommodation coefficient was delivered and used in further quantitative analysis. The results of fluid flow simulations were combined with laboratory measurement results using a gas permeameter. It appeared that for the established parameters and proper fluid flow model (partial slip model, Tangential Momentum Accommodation Coefficient (TMAC), volumetric flow rate values), the obtained absolute permeability was similar to the permeability from the core test analysis.
Keywords: petroleum; natural gas; tight rocks; numerical simulation; permeability; porosity; fluid flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4684/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4684/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4684-:d:295928
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().