Factors Affecting Energy Performance of Large-Scale Office Buildings: Analysis of Benchmarking Data from New York City and Chicago
ChungYeon Won,
SangTae No and
Qamar Alhadidi
Additional contact information
ChungYeon Won: Department of Architecture, School of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
SangTae No: Department of Architecture, Korea National University of Transportation, 50 Daehak-ro, Geomdan-ri, Daesowon-myeon, Chungju-si, Chungcheongbuk-do 27469, Korea
Qamar Alhadidi: Department of Architecture, School of Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
Energies, 2019, vol. 12, issue 24, 1-17
Abstract:
Buildings in high-income, industrialized cities are responsible for more than 50% of global energy consumption; consequently, many developed cities have legislated energy benchmarking and disclosure policies to understand their buildings’ energy-use dynamics better. By utilizing these benchmarking data and additional information taken from 3D models, this paper presents a comprehensive analysis of large-scale office buildings located in New York and Chicago, with respect to their energy use intensity (EUI). To identify the primary factors affecting the EUI, Spearman’s correlation analysis and multiple variate regression tests were performed on office buildings over 500,000 ft 2 (46,452 m 2 ) gross floor area. The results showed the number of floors, construction year, window-to-wall ratio (WWR), and source-to-site ratio statistically significant, while morphological factors such as the relative compactness and surface-to-volume ratio showed limited relation to EUI. In New York City, the smallest EUI median was found in the buildings with 20 to 30 floors, and in Chicago, the buildings with 60 floors or more. A higher source-to-site ratio generally had lower overall EUI in both cities. Despite the high correlation, different kinds of dependency were found for window-to-wall ratio (WWR) and construction year between NYC and Chicago. These findings highlight the relative role that each building’s characteristics play concerning the EUI, depending on the particular building’s typology, scale, and the urban context.
Keywords: energy benchmarking; large-scale office buildings; energy disclosure policy; source energy use intensity; site energy use intensity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4783/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4783/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4783-:d:298258
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().