Enhancement on the Fault Ride through Capability of Power Distribution Systems Linked by Distributed Generation due to the Impedance of Superconducting Fault Current Limiters
Sang-Jae Choi and
Sung-Hun Lim
Additional contact information
Sang-Jae Choi: Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 156-743, Korea
Sung-Hun Lim: Department of Electrical Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu, Seoul 156-743, Korea
Energies, 2019, vol. 12, issue 24, 1-18
Abstract:
Recently, studies on connecting distributed generation (DG) to power distribution systems through DC links have been actively conducted. When a fault in feeder of this power distribution system occurs, a voltage dip can happen in the grid. In order to prevent voltage dips, there are several solutions such as the application of a superconducting fault current limiter (SFCL). If a SFCL with a larger impedance is applied, the voltage dip of the grid is effectively prevented. However, this action can bring about the malfunction or the delayed operation of the over-current relay (OCR) due to the decreased fault current, which causes another problem of protection coordination between the protective relays. On the other hand, if the impedance of the SFCL is too low, excessive reactive power is supplied by the fault ride-through (FRT) regulation and the active power is reduced. This causes an active power imbalance on the DC link and increases the DC link’s voltage. As previous solutions to prevent the rise of DC links’ voltage, the deloading method and the application of a chopper resistor have been suggested. In this paper, a technique called active power tracking control (APTC), was proposed to suppress the rise of DC links’ voltage. Case studies considering the impedance of SFCL in the constructed power distribution system were carried out, and the rise of DC links’ voltage could be effectively suppressed without any significant delay in the operation of the OCR. This study is expected to solve both the voltage dip of the grid and the rise of DC links’ voltage when distributed generation is connected to a grid.
Keywords: distributed generation (DG); fault ride-through (FRT) regulation; DC link’s voltage; superconducting fault current limiter (SFCL); active power tracking control (APTC); over-current relay (OCR) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/24/4810/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/24/4810/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:24:p:4810-:d:298956
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().