EconPapers    
Economics at your fingertips  
 

A New Wind Speed Forecasting Modeling Strategy Using Two-Stage Decomposition, Feature Selection and DAWNN

Sizhou Sun, Lisheng Wei, Jie Xu and Zhenni Jin
Additional contact information
Sizhou Sun: College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China
Lisheng Wei: College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China
Jie Xu: College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China
Zhenni Jin: College of Electrical Engineering, Anhui Polytechnic University, Wuhu 241000, China

Energies, 2019, vol. 12, issue 3, 1-24

Abstract: Accurate wind speed prediction plays a crucial role on the routine operational management of wind farms. However, the irregular characteristics of wind speed time series makes it hard to predict accurately. This study develops a novel forecasting strategy for multi-step wind speed forecasting (WSF) and illustrates its effectiveness. During the WSF process, a two-stage signal decomposition method combining ensemble empirical mode decomposition (EEMD) and variational mode decomposition (VMD) is exploited to decompose the empirical wind speed data. The EEMD algorithm is firstly employed to disassemble wind speed data into several intrinsic mode function (IMFs) and one residual (Res). The highest frequency component, IMF1, obtained by EEMD is further disassembled into different modes by the VMD algorithm. Then, feature selection is applied to eliminate the illusive components in the input-matrix predetermined by partial autocorrelation function (PACF) and the parameters in the proposed wavelet neural network (WNN) model are optimized for improving the forecasting performance, which are realized by hybrid backtracking search optimization algorithm (HBSA) integrating binary-valued BSA (BBSA) with real-valued BSA (RBSA), simultaneously. Combinations of Morlet function and Mexican hat function by weighted coefficient are constructed as activation functions for WNN, namely DAWNN, to enhance its regression performance. In the end, the final WSF values are obtained by assembling the prediction results of each decomposed components. Two sets of actual wind speed data are applied to evaluate and analyze the proposed forecasting strategy. Forecasting results, comparisons, and analysis illustrate that the proposed EEMD/VMD-HSBA-DAWNN is an effective model when employed in multi-step WSF.

Keywords: two-stage signal decomposition; hybrid backtracking search optimization algorithm; wavelet neural network; wind speed forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/3/334/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/3/334/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:3:p:334-:d:199748

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:334-:d:199748