EconPapers    
Economics at your fingertips  
 

A Study on Improvement of Blockchain Application to Overcome Vulnerability of IoT Multiplatform Security

Seong-Kyu Kim, Ung-Mo Kim and Jun-Ho Huh
Additional contact information
Seong-Kyu Kim: School of Electronic and Electrical Computer Engineering, Sungkyunkwan University, Suwon 110-745, Korea
Ung-Mo Kim: School of Electronic and Electrical Computer Engineering, Sungkyunkwan University, Suwon 110-745, Korea
Jun-Ho Huh: Department of Software, Catholic University of Pusan, Busan 46252, Korea

Energies, 2019, vol. 12, issue 3, 1-29

Abstract: IoT devices are widely used in the smart home, automobile, and aerospace areas. Note, however, that recent information on thefts and hacking have given rise to many problems. The aim of this study is to overcome the security weaknesses of existing Internet of Things (IoT) devices using Blockchain technology, which is a recent issue. This technology is used in Machine-to-Machine (M2M) access payment—KYD (Know Your Device)—based on the reliability of existing IoT devices. Thus, this paper proposes a BoT (Blockchain of Things) ecosystem to overcome problems related to the hacking risk of IoT devices to be introduced, such as logistics management and history management. There are also many security vulnerabilities in the sensor multi-platform from the IoT point of view. In this paper, we propose a model that solves the security vulnerability in the sensor multi-platform by using blockchain technology on an empirical model. The color spectrum chain mentioned in this paper suggests a blockchain technique completed by using the multiple-agreement algorithm to enhance Thin-Plate Spline (TPS) performance and measure various security strengths. In conclusion, we propose a radix of the blockchain’s core algorithm to overcome the weaknesses of sensor devices such as automobile, airplane, and close-circuit television (CCTV) using blockchain technology. Because all IoT devices use wireless technology, they have a fundamental weakness over wired networks. Sensors are exposed to hacking and sensor multi-platforms are vulnerable to security by multiple channels. In addition, since IoT devices have a lot of security weaknesses we intend to show the authentication strength of security through the color spectrum chain and apply it to sensor and multi-platform using Blockchain in the future.

Keywords: blockchain; IoT; KYD; M2M; IOTA (MIOTA); whitechain; authentification; rainbowchain; computer architecture (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/3/402/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/3/402/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:3:p:402-:d:201189

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:402-:d:201189