Using Edible Plant and Lightweight Expanded Clay Aggregate (LECA) to Strengthen the Thermal Performance of Extensive Green Roofs in Subtropical Urban Areas
Yi-Yu Huang and
Tien-Jih Ma
Additional contact information
Yi-Yu Huang: Department of Landscape Architecture, Tunghai University, 40704 Taichung, Taiwan
Tien-Jih Ma: Department of Landscape Architecture, Tunghai University, 40704 Taichung, Taiwan
Energies, 2019, vol. 12, issue 3, 1-27
Abstract:
Gazing at natural landscapes and participating in agricultural activities can elicit psychophysiological restoration. However, most buildings are constructed merely to meet the minimum legal requirements for structure weight load. Extensive green roofs consisting of vegetables and a lightweight growth medium can be designed to provide not only passive-cooling effects on bare rooftops, but also to convert idle rooftops into temporary retreats for stressed individuals. The purpose of this study is to both measure the surface temperature reduction and heat amplitude reduction of a bare rooftop using the extensive green roofs containing a lightweight expanded clay aggregate (LECA) and Ipomoea batata as well as conduct a weight-reduction-and-cost analysis to measure the weight loss of the extensive green roofs incurred through LECA replacement. A four-stage field experiment was performed on the flat rooftop of a dormitory in a subtropical climate during summer. The results indicated that roofs with Ipomoea batata had a significantly higher passive-cooling effect than did roofs without Ipomoea batata . The roofs with 10%–40% LECA exhibited a slightly higher passive-cooling effect than did roofs with conventional garden soil. At a slightly different average air temperature (0.56 °C; i.e., 32.04 °C minus 31.48 °C), the combined effects of LECA and Ipomoea batata helped to significantly reduce the average temperature of the bare rooftop by an additional 10.19 °C, namely, temperature reduction of the bare rooftop increased from 9.54 °C under a roof with 0% LECA and without plants in the second stage to 19.73 °C under a roof with 10% LECA and with plants in the fourth stage.
Keywords: Ipomoea batatas; lightweight expanded clay aggregate (LECA), thermal performance; extensive green roof; subtropical climate (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/3/424/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/3/424/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:3:p:424-:d:201704
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().