EconPapers    
Economics at your fingertips  
 

DG System Using PFNN Controllers for Improving Islanding Detection and Power Control

Kuang-Hsiung Tan and Chien-Wu Lan
Additional contact information
Kuang-Hsiung Tan: Department of Electrical and Electronic Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan
Chien-Wu Lan: Department of Electrical and Electronic Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 335, Taiwan

Energies, 2019, vol. 12, issue 3, 1-19

Abstract: In this study, an intelligent controlled distributed generator (DG) system is proposed for tracking control and islanding detection. First, a DC/AC inverter with DC power supply is adopted to emulate a DG system and control the active and reactive power outputs. Moreover, in order to comply with the standard for interconnection with the power grid, a novel active islanding detection method is proposed for the inverter-based DG system. In the proposed active islanding detection method, a perturbation signal is designed to inject into the d -axis current of the DG system which causes the frequency at the terminal of the RLC load to deviate when the power grid breaks down. The feasibility of the proposed active islanding detection method is verified according to the UL 1741 test configuration. Furthermore, in order to improve the tracking control of the active and reactive powers of the inverter-based DG system, and to effectively reduce the detection time of islanding phenomenon, two probabilistic fuzzy neural network (PFNN) controllers are adopted to take the place of the conventional proportional-integral (PI) controllers. In addition, the network structure and the online learning algorithm of the adopted PFNN are presented in details. Finally, some experimental results of the proposed active islanding detection method using PFNN controllers are proposed to validate the effectiveness and feasibility of the tracking control and islanding detection.

Keywords: islanding detection; probabilistic neural network; fuzzy logic; non-detection zone (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/3/506/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/3/506/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:3:p:506-:d:203648

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:506-:d:203648