EconPapers    
Economics at your fingertips  
 

Stochastic Optimization for Integration of Renewable Energy Technologies in District Energy Systems for Cost-Effective Use

Thomas T. D. Tran and Amanda D. Smith
Additional contact information
Thomas T. D. Tran: Indiana Institute of Technology, 1600 E Washington Blvd, Fort Wayne, IN 46803, USA
Amanda D. Smith: Site-Specific Energy Systems Laboratory, Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA

Energies, 2019, vol. 12, issue 3, 1-26

Abstract: Stochastic optimization of a district energy system (DES) is investigated with renewable energy systems integration and uncertainty analysis to meet all three major types of energy consumption: electricity, heating, and cooling. A district of buildings on the campus of the University of Utah is used as a case study for the analysis. The proposed DES incorporates solar photovoltaics (PV) and wind turbines for power generation along with using the existing electrical grid. A combined heat and power (CHP) system provides the DES with power generation and thermal energy for heating. Natural gas boilers supply the remaining heating demand and electricity is used to run all of the cooling equipment. A Monte Carlo study is used to analyze the stochastic power generation from the renewable energy resources in the DES. The optimization of the DES is performed with the Particle Swarm Optimization (PSO) algorithm based on a day-ahead model. The objective of the optimization is to minimize the operating cost of the DES. The results of the study suggest that the proposed DES can achieve operating cost reductions (approximately 10% reduction with respect to the current system). The uncertainty of energy loads and power generation from renewable energy resources heavily affects the operating cost. The statistical approach shows the potential to identify probable operating costs at different time periods, which can be useful for facility managers to evaluate the operating costs of their DES.

Keywords: district energy system; optimization; renewable energy systems; combined heat and power; operating cost; uncertainty (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/3/533/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/3/533/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:3:p:533-:d:204209

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:533-:d:204209