EconPapers    
Economics at your fingertips  
 

Irregular Wave Validation of a Coupling Methodology for Numerical Modelling of Near and Far Field Effects of Wave Energy Converter Arrays

Gael Verao Fernández, Vasiliki Stratigaki and Peter Troch
Additional contact information
Gael Verao Fernández: Department of Civil Engineering, Ghent University, Technologiepark 60, B-9052 Zwijnaarde, Belgium
Vasiliki Stratigaki: Department of Civil Engineering, Ghent University, Technologiepark 60, B-9052 Zwijnaarde, Belgium
Peter Troch: Department of Civil Engineering, Ghent University, Technologiepark 60, B-9052 Zwijnaarde, Belgium

Energies, 2019, vol. 12, issue 3, 1-19

Abstract: Between the Wave Energy Converters (WECs) of a farm, hydrodynamic interactions occur and have an impact on the surrounding wave field, both close to the WECs (“near field” effects) and at large distances from their location (“far field” effects). To simulate this “far field” impact in a fast and accurate way, a generic coupling methodology between hydrodynamic models has been developed by the Coastal Engineering Research Group of Ghent University in Belgium. This coupling methodology has been widely used for regular waves. However, it has not been developed yet for realistic irregular sea states. The objective of this paper is to present a validation of the novel coupling methodology for the test case of irregular waves, which is demonstrated here for coupling between the mild slope wave propagation model, MILDwave, and the ‘Boundary Element Method’-based wave–structure interaction solver, NEMOH. MILDwave is used to model WEC farm “far field” effects, while NEMOH is used to model “near field” effects. The results of the MILDwave-NEMOH coupled model are validated against numerical results from NEMOH, and against the WECwakes experimental data for a single WEC, and for WEC arrays of five and nine WECs. Root Mean Square Error (RMSE) between disturbance coefficient (Kd) values in the entire numerical domain ( R M S E K d , D ) are used for evaluating the performed validation. The R M S E K d , D between results from the MILDwave-NEMOH coupled model and NEMOH is lower than 2.0% for the performed test cases, and between the MILDwave-NEMOH coupled model and the WECwakes experimental data R M S E K d , D remains below 10%. Consequently, the efficiency is demonstrated of the coupling methodology validated here which is used to simulate WEC farm impact on the wave field under the action of irregular waves.

Keywords: numerical modeling; numerical coupling; wave propagation; MILDwave; wave–structure interaction; near field; far field; experimental validation; WECwakes project; wave energy converter arrays (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/3/538/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/3/538/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:3:p:538-:d:204300

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:538-:d:204300