Temperature Disturbance Management in a Heat Exchanger Network for Maximum Energy Recovery Considering Economic Analysis
Ainur Munirah Hafizan,
Jiří Jaromír Klemeš,
Sharifah Rafidah Wan Alwi,
Zainuddin Abdul Manan and
Mohd Kamaruddin Abd Hamid
Additional contact information
Ainur Munirah Hafizan: Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment (RISE), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
Jiří Jaromír Klemeš: Sustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology – VUT BRNO, Technická 2896/2, 616 69 Brno, Czech Republic
Sharifah Rafidah Wan Alwi: Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment (RISE), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
Zainuddin Abdul Manan: Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment (RISE), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
Mohd Kamaruddin Abd Hamid: Process Systems Engineering Centre (PROSPECT), Research Institute for Sustainable Environment (RISE), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 Johor Bahru, Johor, Malaysia
Energies, 2019, vol. 12, issue 4, 1-30
Abstract:
The design of heat exchanger networks (HEN) in the process industry has largely focused on minimisation of operating and capital costs using techniques such as pinch analysis or mathematical modelling. Aspects of operability and flexibility, including issues of disturbances affecting downstream processes during the operation of highly integrated HEN, still need development. This work presents a methodology to manage temperature disturbances in a HEN design to achieve maximum heat recovery, considering the impact of supply temperature fluctuations on utility consumption, heat exchanger sizing, bypass placement and economic performance. Key observations have been made and new heuristics are proposed to guide heat exchanger sizing to consider disturbances and bypass placement for cases above and below the HEN pinch point. Application of the methodology on two case studies shows that the impact of supply temperature fluctuations on downstream heat exchangers can be reduced through instant propagation of the disturbances to heaters or coolers. Where possible, the disturbances have been capitalised upon for additional heat recovery using the pinch analysis plus-minus principle as a guide. Results of the case study show that the HEN with maximum HE area yields economic savings of up to 15% per year relative to the HEN with a nominal HE area.
Keywords: pinch analysis; heat exchanger network (HEN) design; plus-minus principle; supply temperature; disturbances; maximum energy recovery; bypass; economic evaluation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/594/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/594/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:594-:d:205599
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().