Reference-Free Dynamic Voltage Scaler Based on Swapping Switched-Capacitors
A. N. Ragheb and
Hyung Won Kim
Additional contact information
A. N. Ragheb: Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chungbuk National University, Cheongju-si 28644, Korea
Hyung Won Kim: Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chungbuk National University, Cheongju-si 28644, Korea
Energies, 2019, vol. 12, issue 4, 1-22
Abstract:
This paper introduces a reference-free, scalable, and energy-efficient dynamic voltage scaler (DVS) that can be reconfigured for multiple outputs. The proposed DVS employs a novel swapping switched-capacitor (SSC) technique, which can generate target output voltages with higher resolution and smaller ripple voltages than the conventional voltage scalers based on switched-capacitors. The proposed DVS consists of a cascaded 2:1 converter based on swapping capacitors, which is essential to achieve both very small voltage ripple and fine-grain conversion ratios. One of the serious drawbacks of the conventional voltage scalers is the need for external reference voltages to maintain the target output voltage. The proposed SSC; however, eliminates the needs for any reference voltages. This significant benefit is achieved by the self-charging ability of the SSC, which can recharge all its capacitors to the configured voltage by simply swapping the two capacitors in each stage. The proposed SSC-DVS was designed with a resolution of 16 output levels and implemented using a 130 nm CMOS (Complementary Metal Oxide semiconductor) process. We conducted measured results and post-layout simulations with an input voltage of 1.5 V to produce an output voltage range of 0.085–1.4 V, which demonstrated a power efficiency of 85% for a load current of 550 µA with a voltage ripple of as low as 2.656 mV for a 2 K? resistor load.
Keywords: switched-capacitor; voltage converter; dynamic voltage scaler; high energy efficiency; swapping capacitor (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/625/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/625/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:625-:d:206311
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().