EconPapers    
Economics at your fingertips  
 

Dynamic Behavior of Wind Turbine Generator Configurations during Ferroresonant Conditions

Ajibola Akinrinde, Andrew Swanson and Remy Tiako
Additional contact information
Ajibola Akinrinde: Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4001, South Africa
Andrew Swanson: Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4001, South Africa
Remy Tiako: Department of Electrical, Electronics and Computer Engineering, University of KwaZulu-Natal, Durban 4001, South Africa

Energies, 2019, vol. 12, issue 4, 1-16

Abstract: In this paper the dynamic behavior of different wind turbine generator configurations including doubly fed induction generators (DFIG), squirrel cage induction generator (SCIG), wound rotor induction generator (WRIG), and permanent magnet synchronous generator (PMSG) under ferroresonant conditions of energization and de-energization was investigated using Simulink/MATLAB (version 2017B, MathWorks, Natick, MA, USA). The result showed that SCIG had the highest overvoltage of 10.1 PU during energization, followed by WRIG and PMSG, while the least was DFIG. During de-energization, PMSG had the highest overvoltage of 9.58 PU while WRIG had the least. Characterization of the ferroresonance was done using a phase plane diagram to identify the harmfulness of the ferroresonance existing in the system. It was observed that for most of the wind turbine configurations, a chaotic mode of ferroresonance exists for both energization and de-energization scenarios. Although overvoltage during energization for wind turbine generator configurations was higher than in the de-energization with an exception of PMSG, their phase plane diagrams showed that de-energization scenarios were more chaotic than energization scenarios. The study showed that WRIG was the least susceptible to ferroresonance while PMSG was the most susceptible to ferroresonance.

Keywords: ferroresonance; Simulink/MATLAB; wind turbine generator configurations; phase plane diagram (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/639/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/639/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:639-:d:206609

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:639-:d:206609