EconPapers    
Economics at your fingertips  
 

A Data-Driven Predictive Prognostic Model for Lithium-ion Batteries based on a Deep Learning Algorithm

Phattara Khumprom and Nita Yodo
Additional contact information
Phattara Khumprom: Industrial and Manufacturing Engineering, North Dakota State University, Fargo, ND 58102, USA
Nita Yodo: Industrial and Manufacturing Engineering, North Dakota State University, Fargo, ND 58102, USA

Energies, 2019, vol. 12, issue 4, 1-21

Abstract: Prognostic and health management (PHM) can ensure that a lithium-ion battery is working safely and reliably. The main approach of PHM evaluation of the battery is to determine the State of Health (SoH) and the Remaining Useful Life (RUL) of the battery. The advancements of computational tools and big data algorithms have led to a new era of data-driven predictive analysis approaches, using machine learning algorithms. This paper presents the preliminary development of the data-driven prognostic, using a Deep Neural Networks (DNN) approach to predict the SoH and the RUL of the lithium-ion battery. The effectiveness of the proposed approach was implemented in a case study with a battery dataset obtained from the NASA Ames Prognostics Center of Excellence (PCoE) database. The proposed DNN algorithm was compared against other machine learning algorithms, namely, Support Vector Machine (SVM), k-Nearest Neighbors (k-NN), Artificial Neural Networks (ANN), and Linear Regression (LR). The experimental results reveal that the performance of the DNN algorithm could either match or outweigh other machine learning algorithms. Further, the presented results could serve as a benchmark of SoH and RUL prediction using machine learning approaches specifically for lithium-ion batteries application.

Keywords: data-driven; machine learning; deep learning; DNN; prognostic and Health Management; lithium-ion battery (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (27)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/660/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/660/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:660-:d:206979

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:660-:d:206979