EconPapers    
Economics at your fingertips  
 

Wind Power Prediction Based on Extreme Learning Machine with Kernel Mean p -Power Error Loss

Ning Li, Fuxing He and Wentao Ma
Additional contact information
Ning Li: School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
Fuxing He: School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China
Wentao Ma: School of Automation and Information Engineering, Xi’an University of Technology, Xi’an 710048, China

Energies, 2019, vol. 12, issue 4, 1-19

Abstract: In recent years, more and more attention has been paid to wind energy throughout the world as a kind of clean and renewable energy. Due to doubts concerning wind power and the influence of natural factors such as weather, unpredictability, and the risk of system operation increase, wind power seems less reliable than traditional power generation. An accurate and reliable prediction of wind power would enable a power dispatching department to appropriately adjust the scheduling plan in advance according to the changes in wind power, ensure the power quality, reduce the standby capacity of the system, reduce the operation cost of the power system, reduce the adverse impact of wind power generation on the power grid, and improve the power system stability as well as generation adequacy. The traditional back propagation (BP) neural network requires a manual setting of a large number of parameters, and the extreme learning machine (ELM) algorithm simplifies the time complexity and does not need a manual setting of parameters, but the loss function in ELM based on second-order statistics is not the best solution when dealing with nonlinear and non-Gaussian data. For the above problems, this paper proposes a novel wind power prediction method based on ELM with kernel mean p -power error loss, which can achieve lower prediction error compared with the traditional BP neural network. In addition, to reduce the computational problems caused by the large amount of data, principal component analysis (PCA) was adopted to eliminate some redundant data components, and finally the efficiency was improved without any loss in accuracy. Experiments using the real data were performed to verify the performance of the proposed method.

Keywords: wind power prediction; extreme learning machine; kernel mean p -power error; principal component analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/673/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/673/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:673-:d:207343

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:673-:d:207343