EconPapers    
Economics at your fingertips  
 

Electric Energy Consumption Prediction by Deep Learning with State Explainable Autoencoder

Jin-Young Kim and Sung-Bae Cho
Additional contact information
Jin-Young Kim: Department of Computer Science, Yonsei University, Seoul 03722, Korea
Sung-Bae Cho: Department of Computer Science, Yonsei University, Seoul 03722, Korea

Energies, 2019, vol. 12, issue 4, 1-14

Abstract: As energy demand grows globally, the energy management system (EMS) is becoming increasingly important. Energy prediction is an essential component in the first step to create a management plan in EMS. Conventional energy prediction models focus on prediction performance, but in order to build an efficient system, it is necessary to predict energy demand according to various conditions. In this paper, we propose a method to predict energy demand in various situations using a deep learning model based on an autoencoder. This model consists of a projector that defines an appropriate state for a given situation and a predictor that forecasts energy demand from the defined state. The proposed model produces consumption predictions for 15, 30, 45, and 60 min with 60-min demand to date. In the experiments with household electric power consumption data for five years, this model not only has a better performance with a mean squared error of 0.384 than the conventional models, but also improves the capacity to explain the results of prediction by visualizing the state with t-SNE algorithm. Despite unsupervised representation learning, we confirm that the proposed model defines the state well and predicts the energy demand accordingly.

Keywords: electric energy; energy prediction; energy management system; deep learning; autoencoder; explainable AI (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/739/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/739/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:739-:d:208440

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:739-:d:208440