EconPapers    
Economics at your fingertips  
 

Adaptive Gains Control Scheme for PMSG-Based Wind Power Plant to Provide Voltage Regulation Service

Jianfeng Dai, Yi Tang and Jun Yi
Additional contact information
Jianfeng Dai: School of Electrical Engineering, Southeast University, Nanjing 210096, China
Yi Tang: School of Electrical Engineering, Southeast University, Nanjing 210096, China
Jun Yi: China Electric Power Research Institute, Beijing 100192, China

Energies, 2019, vol. 12, issue 4, 1-20

Abstract: High-penetration wind power will count towards a significant portion of future power grid. This significant role requires wind turbine generators (WTGs) to contribute to voltage and reactive power support. The maximum reactive power capacity (MRPC) of a WTG depends on its current input wind speed, so that the reactive power regulating ability of the WTG itself and adjacent WTGs are not necessarily identical due to the variable wind speed and the wake effect. This paper proposes an adaptive gains control scheme (AGCS) for a permanent magnet synchronous generator (PMSG)-based wind power plant (WPP) to provide a voltage regulation service that can enhance the voltage-support capability under load disturbance and various wind conditions. The droop gains of the voltage controller for PMSGs are spatially and temporally dependent variables and adjusted adaptively depending on the MRPC which are a function of the current variable wind speed. Thus, WTGs with lower input wind speed can provide greater reactive power capability. The proposed AGCS is demonstrated by using a PSCAD/EMTDC simulator. It can be concluded that, compared with the conventional fixed-gains control scheme (FGCS), the proposed method can effectively improve the voltage-support capacity while ensuring stable operation of all PMSGs in WPP, especially under high wind speed conditions.

Keywords: permanent magnet synchronous generator (PMSG); droop control; adaptive-gain; voltage support; maximum reactive power capacity (MRPC) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/753/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/753/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:753-:d:208676

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:753-:d:208676