Study on the Cooling Effect of Attached Fins on PV Using CFD Simulation
Jaemin Kim and
Yujin Nam
Additional contact information
Jaemin Kim: Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea
Yujin Nam: Department of Architectural Engineering, Pusan National University, 2 Busandaehak-ro 63, Geomjeong-gu, Busan 46241, Korea
Energies, 2019, vol. 12, issue 4, 1-12
Abstract:
The issue of efficiency decrease according to temperature increase is a pending problem in the PV market. Several active and passive technologies have been suggested but few quantitative studies on the estimation of the cooling effect have been carried out. In this study, a CFD (computational fluid dynamics) simulation model was developed to analyze a passive cooling technology using fins attached to the back of the PV module. Furthermore, a method to improve airflow at the back of the PV module by forming slits in the frame was analyzed. The simulation model reproduced the indoor test that uses a solar simulator and the cooling performance was analyzed according to the shape of the fins and the presence of slits. In the simulation results, the surface temperature and expected electrical efficiency without cooling were 62.78 °C and 13.24% respectively under nominal operating cell temperature conditions. Moreover, the temperature reduced by approximately 15.13 °C because the fins attached at the bottom of the PV module increased the heat transfer area with airflow. Thus, the electrical efficiency according to the PV module temperature was predicted as 14.39%. Furthermore, when slits were installed between the fins, they increased the airflow velocity and accelerated the formation of turbulence, thereby improving the cooling performance of the fins. The simulation results showed that the temperature could be further reduced by approximately 8.62 °C at a lower air velocity. As the fins and slits can also reduce the non-uniformity of the temperature, they are expected to supplement the efficiency and durability reduction of the PV modules caused by the hot spot phenomenon. In addition, it was shown that slits in the frame could further improve the cooling performance of the fins at a low-velocity airflow.
Keywords: computational fluid dynamics (CFD); solar energy; photovoltaic (PV); passive cooling; cooling fin; slit (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/758/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/758/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:758-:d:208791
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().