Modelling Load Profiles of Heat Pumps
Jochen Conrad and
Simon Greif
Additional contact information
Jochen Conrad: Forschungsstelle für Energiewirtschaft e. V., 80995 Munich, Germany
Simon Greif: Forschungsstelle für Energiewirtschaft e. V., 80995 Munich, Germany
Energies, 2019, vol. 12, issue 4, 1-11
Abstract:
Approximately one quarter of energy-related emissions in Germany are caused by the domestic sector. At 81%, the largest share of these emissions is due to heat supply. Many measures are available to reduce these emissions. One of these measures, which is considered to play an important role in many studies, is the replacement of fossil-fired boilers with electric heat pumps. In order to be able to analyse the impact of high penetrations of heat pumps on the energy system, the coefficient of performance (COP) must be modelled with high temporal resolution. In this study, a methodology is presented on how to calculate high-resolution COPs and the electrical load of heat pumps based on thermal load curves and temperature time series. The COP is determined by the reciprocal Carnot factor. Since heat pumps are often designed bivalently due to the cost structure, the methodology described can also be used for evaluating the combination of immersion heater and heat pump (here for the air/water heat pump). As a result the theoretical hourly COPs determined are calibrated with annual performance factors from field tests. The modelled COPs show clear differences. Currently, mostly air source heat pumps are installed in Germany. If this trend continues, the maximum electrical load of the heat supply will increase more than would be the case with higher shares of ground source heat pumps.
Keywords: heat pump; coefficient of performance; COP; Carnot; seasonal performance factor; electricity load; domestic sector; sector model; air source heat pump; ground source heat pump (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/4/766/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/4/766/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:4:p:766-:d:208936
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().