Experimental Study of Profile Control with Foam Stabilized by Clay Particle and Surfactant
Songyan Li,
Chenyu Qiao,
Guowei Ji,
Qun Wang and
Lei Tao
Additional contact information
Songyan Li: College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Chenyu Qiao: College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Guowei Ji: China Aviation Oil and Petrochemical Pipeline Company Limited, Beijing 101300, China
Qun Wang: College of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
Lei Tao: School of Petroleum Engineering, Changzhou University, Changzhou 213164, China
Energies, 2019, vol. 12, issue 5, 1-19
Abstract:
Foam is a kind of ideal fluid for profile control in petroleum engineering, which has attracted intense interests of scholars globally in recent years. In this study, a foam system stabilized with anionic surfactants and clay particles was proposed for profile control in reservoirs, and the formulation was optimized experimentally. Moreover, flooding experiments in visible porous media models and in sandpacks were conducted to test the plugging effect of the foam system on reservoirs, and the effects of different factors such as gas–liquid ratio, temperature and permeability on profile control were also evaluated. According to the experimental results, the clay-HY-2 system was elected for its satisfactory foamability, stability, and salinity resistance, and the optimum concentrations of HY-2 and clay particle are 0.6 wt% and 5.0 wt%, respectively. Compared with traditional foam fluids, the clay-HY-2 system can form denser and smaller bubbles in high- and middle-permeable layers, enhancing the plugging effect there, while there are less bubbles in low-permeable layers, i.e., the restriction on the flow in narrow structures is slight. The clay-HY-2 foam can perform the efficient and uniform profile control effect on sandpacks when the foam quality is around 50%. The resistance factor of the foam decrease gradually with the increasing temperature, however, the resistance factor remains higher than 350.0 when the temperature reaches 80.0 °C. When the permeability exceeds 1502.0 mD, the clay-HY-2 foam can perform deep profile control in reservoirs, and the resistance factor are not sensitive to the change of permeability when it exceeds 3038.0 mD. Besides, the site application case shows that the clay-HY-2 foam do have good profile control effect on reservoirs, i.e., improving oil production and declining water cut.
Keywords: clay enhanced foam; profile control; enhance oil recovery (EOR); site application (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/5/781/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/5/781/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:5:p:781-:d:209238
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().