Performance and Efficiency Analysis of an HT-PEMFC System with an Absorption Chiller for Tri-Generation Applications
Geonhui Gwak,
Minwoo Kim,
Dohwan Kim,
Muhammad Faizan,
Kyeongmin Oh,
Jaeseung Lee,
Jaeyoo Choi,
Nammin Lee,
Kisung Lim and
Hyunchul Ju
Additional contact information
Geonhui Gwak: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Minwoo Kim: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Dohwan Kim: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Muhammad Faizan: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Kyeongmin Oh: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Jaeseung Lee: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Jaeyoo Choi: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Nammin Lee: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Kisung Lim: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Hyunchul Ju: WCSL (World Class Smart Lab) of the Green Battery Lab, Department of Mechanical Engineering, Inha University, 100 Inha-ro Michuhol-gu, Incheon 22212, Korea
Energies, 2019, vol. 12, issue 5, 1-21
Abstract:
An absorption chiller model for tri-generation (combined cooling, heating, and power) is developed and incorporated with the high temperature- (HT-) proton exchange membrane fuel cell (PEMFC) system model that was developed in our previous study. We employ a commercially available flow simulator, Aspen HYSYS, for solving the energy and mass balances of various system components, including an HT-PEMFC stack that is based on a phosphoric acid-doped PBI membrane, natural gas-fueled reformer, LiBr-H 2 O absorption chiller, balance of plant (BOP) components, and heat exchangers. Since the system’s operating strategy for tri-generation must be changed, depending on cooling or heating loads, a major focus of this study is to analyze system performance and efficiency under different requirements of electricity generation, cooling, and heating conditions. The system simulation results revealed that high-current fuel-cell operation is essential in raising the cooling capacity, but the overall system efficiency is slightly reduced as a result. Using a lower fuel-air ratio for the burner in the reforming module is one alternative that can minimize the reduction in the overall system efficiency under high-current fuel-cell operation and large cooling-capacity modes.
Keywords: tri-generation; phosphoric acid-doped PBI membrane; steam reforming; absorption chiller; fuel cell system modeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/5/905/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/5/905/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:5:p:905-:d:212288
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().