EconPapers    
Economics at your fingertips  
 

A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers

Aneta Sapińska-Sliwa, Marc A. Rosen, Andrzej Gonet, Joanna Kowalczyk and Tomasz Sliwa
Additional contact information
Aneta Sapińska-Sliwa: Faculty of Drilling, Oil and Gas, Department of Drilling and Geoengineering, Laboratory of Geoenergetics, AGH University of Science and Technology (AGH UST), al. Mickiewicza 30, 30-059 Krakow, Poland
Marc A. Rosen: Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H 7K4, Canada
Andrzej Gonet: Faculty of Drilling, Oil and Gas, Department of Drilling and Geoengineering, Laboratory of Geoenergetics, AGH University of Science and Technology (AGH UST), al. Mickiewicza 30, 30-059 Krakow, Poland
Joanna Kowalczyk: Faculty of Mathematics and Natural Sciences, University of Rzeszow, Al. Rejtana 16c, 35-959 Rzeszów, Poland
Tomasz Sliwa: Faculty of Drilling, Oil and Gas, Department of Drilling and Geoengineering, Laboratory of Geoenergetics, AGH University of Science and Technology (AGH UST), al. Mickiewicza 30, 30-059 Krakow, Poland

Energies, 2019, vol. 12, issue 6, 1-22

Abstract: Research on borehole heat exchangers is described on the development of a method for the determination, based on thermal response tests, of the effective thermal conductivity and the thermal resistivity for borehole heat exchangers. This advance is important, because underground thermal energy storage increasingly consists of systems with a large number of borehole heat exchangers, and their effective thermal conductivities and thermal resistivities are significant parameters in the performance of the system (whether it contains a single borehole or a field of boreholes). Borehole thermal energy storages provide a particularly beneficial method for using ground energy as a clean thermal energy supply. This benefit is especially relevant in cities with significant smog in winter. Here, the authors describe, in detail, the development of a formula that is a basis for the thermal response test that is derived from Fourier’s Law, utilizing a new way of describing the basic parameters of the thermal response test, i.e., the effective thermal conductivity and the thermal resistivity. The new method is based on the resistivity equation, for which a solution giving a linear regression with zero directional coefficient is found. Experimental tests were performed and analyzed in support of the theory, with an emphasis on the interpretation differences that stem from the scope of the test.

Keywords: geoenergetics; ground source heat pumps; borehole heat exchangers; thermal response test; borehole thermal energy storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/6/1072/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/6/1072/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:6:p:1072-:d:215525

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:6:p:1072-:d:215525