A Power Converter Decoupled from the Resonant Network for Wireless Inductive Coupling Power Transfer
Lin Chen,
Jianfeng Hong,
Mingjie Guan,
Wei Wu and
Wenxiang Chen
Additional contact information
Lin Chen: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China
Jianfeng Hong: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China
Mingjie Guan: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China
Wei Wu: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China
Wenxiang Chen: Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361005, China
Energies, 2019, vol. 12, issue 7, 1-18
Abstract:
In a traditional inductive coupling power transfer (ICPT) system, the converter and the resonant network are strongly coupled. Since the coupling coefficient and the parameters of the resonant network usually vary, the resonant network easily detunes, and the system efficiency, power source capacity, power control, and soft switching conditions of the ICPT system are considerably affected. This paper presents an ICPT system based on a power converter decoupled from the resonant network. In the proposed system, the primary inductor is disconnected from the resonant network during the energy injection stage. After storing a certain amount of energy, the primary inductor is reconnects with the resonant network. Through this method, the converter can be decoupled from the resonant network, and the resonant network can be tuned under various coupling coefficients. Theoretical analysis was explored first. Simulations and experimental work are carried out to verify the theoretical analysis. The results show that the proposed ICPT system has the virtues of low power source capacity, independent power control, and soft switching operation under different coupling coefficients.
Keywords: inductive coupling power transfer; decoupled; energy injection; soft switching; efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1192/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1192/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1192-:d:217522
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().