Multi-Period Observation Clustering for Tariff Definition in a Weekly Basis Remuneration of Demand Response
Cátia Silva,
Pedro Faria and
Zita Vale
Additional contact information
Cátia Silva: GECAD-Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP-Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Pedro Faria: GECAD-Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP-Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Zita Vale: GECAD-Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP-Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, 4200-072 Porto, Portugal
Energies, 2019, vol. 12, issue 7, 1-24
Abstract:
Distributed energy resources can improve the operation of power systems, improving economic and technical efficiency. Aggregation of small size resources, which exist in large number but with low individual capacity, is needed to make these resources’ use more efficient. In the present paper, a methodology for distributed resources management by an aggregator is proposed, which includes the resources scheduling, aggregation and remuneration. The aggregation, made using a k-means algorithm, is applied to different approaches concerning the definition of tariffs for the period of a week. Different consumer types are remunerated according to time-of-use tariffs existing in Portugal. Resources aggregation and remuneration profiles are obtained for over 20.000 consumers and 500 distributed generation units. The main goal of this paper is to understand how the aggregation phase, or the way that is performed, influences the final remuneration of the resources associated with Virtual Power Player (VPP). In order to fulfill the proposed objective, the authors carried out studies for different time frames (week days, week-end, whole week) and also analyzed the effect of the formation of the remuneration tariff by considering a mix of fixed and indexed tariff. The optimum number of clusters is calculated in order to determine the best number of DR programs to be implemented by the VPP.
Keywords: clustering; demand response; distributed generation; smart grids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1248/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1248/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1248-:d:218963
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().