EconPapers    
Economics at your fingertips  
 

Thermal-Hydraulic Performance Analysis of Twin-Pipes for Various Future District Heating Schemes

Milad Khosravi and Ahmad Arabkoohsar
Additional contact information
Milad Khosravi: Department of Civil Engineering, Razi University, Kermanshah, Iran
Ahmad Arabkoohsar: Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark

Energies, 2019, vol. 12, issue 7, 1-17

Abstract: Future energy systems will come with a 100% share of renewable energy and high integration of energy systems. District heating and cooling systems will be undeniable parts of the future energy systems, as they pave the bed for high-efficiency, low cost, and clean production. District heating systems may come into a wide range of designs in the future. Currently, most of the world’s district heating systems are based on the third generation design while everything in this framework is on the verge of a transition to the fourth generation. A large number of technologies for the future district heating systems has been proposed so far, among which low-, ultralow- and variable-temperature systems seem more of qualification. This study employs computational fluid dynamics to make a comprehensive examination of the compatibility of regular twin-pipes with various potential district heating schemes for future energy systems. The results show that both low- and ultralow-temperature systems could efficiently use regular twin-pipes commonly used in the third generation district heating systems, though the insulation of the pipe could be proportionally strengthened based on a techno-economic trade-off. In contrast, the results show that the thermal inertia of the pipe does not allow the variable-temperature district heating system to effectively operate when the transmission pipeline is longer than a limited length. Therefore, a regular heat distribution network may not be an appropriate host for a variable-temperature district heating scheme unless decentralized heat production units come into service.

Keywords: low-temperature district heating; ultralow-temperature district heating; variable-temperature district heating; twin-pipe; thermal-hydraulic performance; thermal inertia (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1299/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1299/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1299-:d:220021

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1299-:d:220021