EconPapers    
Economics at your fingertips  
 

Methodology for the Quantification of the Impact of Weather Forecasts in Predictive Simulation Models

Eva Lucas Segarra, Hu Du, Germán Ramos Ruiz and Carlos Fernández Bandera
Additional contact information
Eva Lucas Segarra: School of Architecture, University of Navarra, 31009 Pamplona, Spain
Hu Du: Welsh School of Architecture, Cardiff University, Bute Building, King Edward VII Avenue, Cardiff, Wales CF10 3NB, UK
Germán Ramos Ruiz: School of Architecture, University of Navarra, 31009 Pamplona, Spain
Carlos Fernández Bandera: School of Architecture, University of Navarra, 31009 Pamplona, Spain

Energies, 2019, vol. 12, issue 7, 1-16

Abstract: The use of Building Energy Models (BEM) has become widespread to reduce building energy consumption. Projection of the model in the future to know how different consumption strategies can be evaluated is one of the main applications of BEM. Many energy management optimization strategies can be used and, among others, model predictive control (MPC) has become very popular nowadays. When using models for predicting the future, we have to assume certain errors that come from uncertainty parameters. One of these uncertainties is the weather forecast needed to predict the building behavior in the near future. This paper proposes a methodology for quantifying the impact of the error generated by the weather forecast in the building’s indoor climate conditions and energy demand. The objective is to estimate the error introduced by the weather forecast in the load forecasting to have more precise predicted data. The methodology employed site-specific, near-future forecast weather data obtained through online open access Application Programming Interfaces (APIs). The weather forecast providers supply forecasts up to 10 days ahead of key weather parameters such as outdoor temperature, relative humidity, wind speed and wind direction. This approach uses calibrated EnergyPlus models to foresee the errors in the indoor thermal behavior and energy demand caused by the increasing day-ahead weather forecasts. A case study investigated the impact of using up to 7-day weather forecasts on mean indoor temperature and energy demand predictions in a building located in Pamplona, Spain. The main novel concepts in this paper are: first, the characterization of the weather forecast error for a specific weather data provider and location and its effect in the building’s load prediction. The error is calculated based on recorded hourly data so the results are provided on an hourly basis, avoiding the cancel out effect when a wider period of time is analyzed. The second is the classification and analysis of the data hour-by-hour to provide an estimate error for each hour of the day generating a map of hourly errors. This application becomes necessary when the building takes part in the day-ahead programs such as demand response or flexibility strategies, where the predicted hourly load must be provided to the grid in advance. The methodology developed in this paper can be extrapolated to any weather forecast provider, location or building.

Keywords: weather forecast uncertainty; building energy model; building simulation; energy flexible buildings; model predictive control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1309/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1309/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1309-:d:220279

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1309-:d:220279