Forecasting China’s Renewable Energy Terminal Power Consumption Based on Empirical Mode Decomposition and an Improved Extreme Learning Machine Optimized by a Bacterial Foraging Algorithm
Peng Jiang,
Jun Dong and
Hui Huang
Additional contact information
Peng Jiang: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Jun Dong: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Hui Huang: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Energies, 2019, vol. 12, issue 7, 1-24
Abstract:
The energy consumption pattern dominated by traditional fossil energy has led to global energy resource constraints and the deterioration of the ecological environment. These challenges have become a major issue all over the world. At present, the Chinese government aims to significantly reduce the fossil energy consumption contribution in the terminal energy consumption. The development of renewable energy in the terminal energy and energy conversion links has significantly increased the proportion of clean low-carbon energy. In order to accurately get the proportion of renewable energy terminal power consumption, firstly, this paper selects a primary influencing-factors set including the gross GDP, fixed investment in renewable energy industry, total length of cross-provincial and cross-regional high-voltage transmission lines, etc. as influencing factors of China’s electricity consumption fraction produced by renewable energy based on a multitude of papers. Secondly, from the perspective of signal decomposition, the data inevitably has a lot of interference and noise. This paper uses the empirical mode decomposition (EMD) algorithm to reduce the degree of signal distortion and decomposes the signal into natural modes including several intrinsic mode functions (IMFs) and a residual term (Res); afterwards, a new extreme learning machine (ELM) forecasting model optimized by an Inverse Square Root Linear Units (ISRLU) activation function is proposed, and the ISRLU function is used to replace the implicit layer activation function in the original ELM algorithm. Then, a new bacterial foraging algorithm (BFOA) is applied to optimize the parameters of the optimized ELM forecasting model. After multiple learning and training operations, the optimal parameters are obtained. Finally, we superimpose the output of each IMF and Res training task to get the amount of China’s power consumption produced by renewable energy. Some statistical indicators including root mean squard error (RMSE) are applied to compare the accuracy of several intelligent machine forecasting algorithms. We prove that the proposed forecasting model has higher prediction accuracy and achieves faster training speed by an empirical analysis. Finally, the proposed combined forecasting algorithm is applied to predict China’s renewable energy terminal power consumption from 2018 to 2030. According to the forecasting results, it is found that China’s renewable energy terminal power consumption shows a gradual growth trend, and will exceeded 3300 billion kWh in 2030, which will represent a renewable energy terminal power ratio of about 38% in 2030.
Keywords: renewable energy terminal power consumption; energy forecasting; grey theory; empirical mode decomposition; bacterial foraging algorithm; extreme learning machine algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1331/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1331/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1331-:d:220754
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().