EconPapers    
Economics at your fingertips  
 

Evaluation of Cyclic Gas Injection in Enhanced Recovery from Unconventional Light Oil Reservoirs: Effect of Gas Type and Fracture Spacing

Yasaman Assef and Pedro Pereira Almao
Additional contact information
Yasaman Assef: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada
Pedro Pereira Almao: Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada

Energies, 2019, vol. 12, issue 7, 1-24

Abstract: Production from ultra-low permeability shale plays requires advanced technologies such as horizontal wells with multistage hydraulic fracturing treatment. In this study, a cyclic gas injection method with two pumping schedules is introduced as an enhanced oil recovery (EOR) method. Fracture spacing and type of injection gas in a horizontal well from the Bakken formation are analyzed through numerical simulations. The economic profitability and reservoir performance are also investigated. Rate transient analysis is used to anticipate hydraulic fracture and effective fracture permeability. Different fracture spacings are selected as the major determinant factor in generating an effective reservoir contact area. Compositional simulations are conducted to model incremental oil recovery after cyclic injection of three gases (ethane, CO 2 , and natural gas). Economic indicators of net present value (NPV), internal rate of return (IRR) and oil recovery factor are compared to determine the best alternative among the proposed investment scenarios. Current market and a certain time-frame (2015–2035) are used to assess the investment viability of unconventional oil plays. Cyclical injection of ethane and CO 2 , remarkably improved oil recovery from the Bakken example. Natural gas injection however, led to inferior results and in terms of investment, may not guarantee the long-term success. Some scenarios are identified as profitable for high oil-API but do not achieve positive outcomes from lower oil specific gravities. The results from this study highlight the impact of fracture spacing in incremental oil recovery. Producing a majority of the cumulative oil during the first years makes most of the scenarios viable only for short terms. To maintain the long-term cost-effectiveness, performing cyclic gas injection through hydraulic fractures is recommended. Cycle sizes directly impact the propagation of injectant and the extent of the drainage area. Increasing the number of fracking stages can be an alternative strategy to gas injection in reservoirs with lower oil-API.

Keywords: ultra-low permeability; hydraulic fracturing; cyclical gas injection; fracking stages (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1370/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1370/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1370-:d:221272

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1370-:d:221272