Anti-Interference and Location Performance for Turn-to-Turn Short Circuit Detection in Turbo-Generator Rotor Windings
Yucai Wu and
Guanhua Ma
Additional contact information
Yucai Wu: North China Electric Power University Dept. of Electrical Engineering State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Baoding 071003, China
Guanhua Ma: North China Electric Power University Dept. of Electrical Engineering State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, Baoding 071003, China
Energies, 2019, vol. 12, issue 7, 1-18
Abstract:
Online and location detection of rotor winding inter-turn short circuits are an important direction in the field of fault diagnosis in turbo-generators. This area is facing many difficulties and challenges. This study is based on the principles associated with the U-shaped detection coil method. Compared with dynamic eccentricity faults, the characteristics of the variations in the main magnetic field after a turn-to-turn short circuit in rotor windings were analyzed and the unique characteristics were extracted. We propose that the degree of a turn-to-turn short circuit can be judged by the difference in the induction voltage of the double U-shaped detection coils mounted on the stator core. Here, the faulty slot position was determined by the local convex point formed by the difference in the induced voltage. Numerical simulation was used here to determine the induced voltage characteristics in the double U-shaped coils caused by the turn-to-turn short circuit fault. We analyzed the dynamic eccentricity fault as well as combined the fault of a turn-to-turn short circuit and dynamic eccentricity. Finally, we demonstrate the positive anti-interference performance associated with this fault detection method. This new online detection method is satisfactory in terms of sensitivity, speed, and positioning, and overall performance is superior to the traditional online detection methods.
Keywords: turbo-generator; rotor winding; turn-to-turn short circuit; dynamic eccentricity; detection coil; judge (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1378/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1378/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1378-:d:221418
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().