EconPapers    
Economics at your fingertips  
 

Numerical Investigation of the Wind and Thermal Conditions in Sky Gardens in High-Rise Buildings

Murtaza Mohammadi and John Kaiser Calautit
Additional contact information
Murtaza Mohammadi: Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK
John Kaiser Calautit: Department of Architecture and Built Environment, University of Nottingham, Nottingham NG7 2RD, UK

Energies, 2019, vol. 12, issue 7, 1-33

Abstract: High-rise buildings are known to be highly energy intensive, adding stress on already stressed resources. Alternatively, designers are looking at passive strategies and investing in architectural elements, such as sky gardens, which could improve the performance of buildings. Sky gardens are green areas located in a building which are exposed to the outdoors. They could provide multifaceted improvements in buildings by introducing environmental benefits to occupants and altering microclimate. This study aims to determine the wind comfort and thermal condition in sky gardens in high-rise buildings using numerical modelling. Different geometrical configurations of sky gardens were simulated and analysed. Based on the initial results, the study reveals that sky gardens can generate high wind velocities of the order ~10 m/s when located on a high-rise building. The addition of features such as trees and other architectural elements, which can act as a buffer, can help attenuate the high wind speeds and creating habitable spaces. The reduction varies 50%–80%, depending on the location and spatial domain of the sky garden. Furthermore, the study also investigated the reduction in air temperature due to the addition of trees, which can further reduce temperature in hot weather.

Keywords: CFD; sky garden; high-rise building; vegetation; wind (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1380/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1380/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1380-:d:221465

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:7:p:1380-:d:221465