An Experimental Investigation of Flow Regimes in Imbibition and Drainage Using a Microfluidic Platform
Feng Guo and
Saman A. Aryana
Additional contact information
Feng Guo: Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA
Saman A. Aryana: Department of Chemical Engineering, University of Wyoming, Laramie, WY 82071, USA
Energies, 2019, vol. 12, issue 7, 1-13
Abstract:
Instabilities in immiscible displacement along fluid−fluid displacement fronts in porous media are undesirable in many natural and engineered displacement processes such as geological carbon sequestration and enhanced oil recovery. In this study, a series of immiscible displacement experiments are conducted using a microfluidic platform across a wide range of capillary numbers and viscosity ratios. The microfluidic device features a water-wet porous medium, which is a two-dimensional representation of a Berea sandstone. Data is captured using a high-resolution camera, enabling visualization of the entire domain, while being able to resolve features as small as 10 µm. The study reports a correlation between fractal dimensions of displacement fronts and displacement front patterns in the medium. Results are mapped on a two-dimensional parameter space of log M and log Ca, and stability diagrams proposed in literature for drainage processes are superimposed for comparison. Compared to recent reports in the literature, the results in this work suggest that transition regimes may constitute a slightly larger portion of the overall flow regime diagram. This two-phase immiscible displacement study helps elucidate macroscopic processes at the continuum scale and provides insights relevant to enhanced oil recovery processes and the design of engineered porous media such as exchange columns and membranes.
Keywords: drainage; imbibition; fractal dimension; phase diagram (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/7/1390/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/7/1390/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:7:p:1390-:d:221722
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().