Optical Gas Imaging (OGI) as a Moderator for Interdisciplinary Cooperation, Reduced Emissions and Increased Safety
Torgrim Log,
Wegar Bjerkeli Pedersen and
Heike Moumets
Additional contact information
Torgrim Log: Department of Fire Safety and HSE Engineering, Fire Disaster Research Group, Western Norway University of Applied Sciences, 5528 Haugesund, Norway
Wegar Bjerkeli Pedersen: Equinor Hammerfest LNG, 9601 Hammerfest, Norway
Heike Moumets: Equinor Hammerfest LNG, 9601 Hammerfest, Norway
Energies, 2019, vol. 12, issue 8, 1-13
Abstract:
Optical Gas Imaging (OGI) cameras represent an interesting tool for identifying leaking components in hydrocarbon processing and transport systems. They make it possible to see exactly where a leak originates, thereby enabling efficient leak detection and repair (LDAR) programs. The present paper reports on an OGI test campaign initiated by the Norwegian Environmental Agency (NEA), and how this campaign stimulated cross-disciplinary cooperation at an LNG plant for better control of both fugitive hydrocarbon emissions and safety-related leaks. A surprising potentially severe leak detected in the NEA campaign triggered the introduction of in-house OGI cameras at plants and refineries, and an inter-disciplinary cooperation between specialists in the environment, technical safety and operations. Some benefits of in-house OGI cameras, as well as some concerns regarding their use are presented and discussed. The general experience is that an Ex safe, i.e., rated for safe use in a combustible hydrocarbon gas atmosphere, OGI camera, represents a very valuable tool for detecting fugitive emissions as the start point for LDAR programs. An OGI camera did, however, also turn out to be a valuable tool for fire and explosion risk management, and has led to reduced downtime after leak incidents. The concerns relate to leaks seen through the OGI camera that may look overwhelming, even with concentrations well below the ignitable limits of the released gas. Based on the LNG plant experiences, it is generally recommended that specialists in the environment, technical safety, operations and teaching fields cooperate regarding the introduction and use of OGI cameras. Suggestions for training courses are also discussed.
Keywords: methane emissions; hydrocarbon leaks; Optical Gas Imaging (OGI); interdisciplinary cooperation; leak detection and repair (LDAR) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/8/1454/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/8/1454/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:8:p:1454-:d:223513
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().