EconPapers    
Economics at your fingertips  
 

Application of a Superconducting Fault Current Limiter to Enhance the Low-Voltage Ride-Through Capability of Wind Turbine Generators

Hyeong-Jin Lee, Sung-Hun Lim and Jae-Chul Kim
Additional contact information
Hyeong-Jin Lee: Department of Electrical Engineering Soongsil University, Seoul 06978, Korea
Sung-Hun Lim: Department of Electrical Engineering Soongsil University, Seoul 06978, Korea
Jae-Chul Kim: Department of Electrical Engineering Soongsil University, Seoul 06978, Korea

Energies, 2019, vol. 12, issue 8, 1-14

Abstract: The penetration of wind turbine generators onto the grid has grown worldwide at unprecedented rates in recent years. This raises the concern that the tripping of wind turbine generators could potentially cause system collapses. To alleviate these concerns, wind turbine generators need to maintain connection with the grid when a grid fault occurs. This has provoked many countries to adopt low-voltage ride-through (LVRT) for wind turbine generators. The LVRT is the capability of wind turbine generators to maintain connectivity during certain periods of voltage sag. The wind turbine generators should be connected to the grid to support fault recovery. Also, wind turbine generators must provide reactive power according to the grid voltage sag. Therefore, much research has been focused on enhancing LVRT capability. To enhance LVRT capability, this paper proposes the application of a superconducting fault current limiter (SFCL) in the system. The fault current was suppressed and the voltage sag was improved through the application of the SFCL. By improving the voltage sag, the wind turbine generator and the grid were able to maintain a connection. However, suppression of the fault current can cause a problem in the overcurrent relay (OCR) trip time delay. The trip time delay was solved by OCR resetting. Through a power system computer-aided design/electromagnetic transients including DC (PSCAD/EMTDC), the enhancement of LVRT capability and improvement of the trip delay was confirmed.

Keywords: low-voltage ride-through (LVRT); offshore wind farm; superconducting fault current limiter (SFCL); overcurrent relay (OCR); trip time delay (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/8/1478/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/8/1478/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:8:p:1478-:d:224118

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1478-:d:224118