EconPapers    
Economics at your fingertips  
 

Total Organic Carbon Enrichment and Its Impact on Pore Characteristics: A Case Study from the Niutitang Formation Shales in Northern Guizhou

Li Liu, Shuheng Tang and Zhaodong Xi
Additional contact information
Li Liu: School of Energy Resource, China University of Geosciences (Beijing), Beijing 100083, China
Shuheng Tang: School of Energy Resource, China University of Geosciences (Beijing), Beijing 100083, China
Zhaodong Xi: School of Energy Resource, China University of Geosciences (Beijing), Beijing 100083, China

Energies, 2019, vol. 12, issue 8, 1-23

Abstract: This study analyzes samples from the Lower Cambrian Niutitang Formation in northern Guizhou Province to enable a better understanding of total organic carbon (TOC) enrichment and its impact on the pore characteristics of over-mature marine shale. Organic geochemical analysis, X-ray diffraction, scanning electron microscopy, helium porosity, and low-temperature nitrogen adsorption experiments were conducted on shale samples. Their original TOC (TOC o ) content and organic porosity were estimated by theoretical calculation, and fractal dimension D was computed with the fractal Frenkel–Halsey–Hill model. The results were then used to consider which factors control TOC enrichment and pore characteristics. The samples are shown to be dominated by type-I kerogen with a TOC content of 0.29–9.36% and an equivalent vitrinite reflectance value of 1.72–2.72%. The TOC o content varies between 0.64% and 18.17%, and the overall recovery coefficient for the Niutitang Formation was 2.16. Total porosity of the samples ranged between 0.36% and 6.93%. TOC content directly controls porosity when TOC content lies in the range 1.0% to 6.0%. For samples with TOC < 1.0% and TOC > 6.0%, inorganic pores are the main contributors to porosity. Additionally, pore structure parameters show no obvious trends with TOC, quartz, and clay mineral content. The fractal dimension D1 is between 2.619 and 2.716, and D2 is between 2.680 and 2.854, illustrating significant pore surface roughness and structural heterogeneity. No single constituent had a dominant effect on the fractal characteristics.

Keywords: Niutitang formation; TOC recovery; organic pores; porosity; pore structure (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/8/1480/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/8/1480/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:8:p:1480-:d:224133

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1480-:d:224133