EconPapers    
Economics at your fingertips  
 

Least Mean Squares and Recursive Least Squares Algorithms for Total Harmonic Distortion Reduction Using Shunt Active Power Filter Control

Radek Martinek, Jaroslav Rzidky, Rene Jaros, Petr Bilik and Martina Ladrova
Additional contact information
Radek Martinek: Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Jaroslav Rzidky: Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Rene Jaros: Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Petr Bilik: Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic
Martina Ladrova: Department of Cybernetics and Biomedical Engineering, Faculty of Electrical Engineering and Computer Science, VSB–Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava, Czech Republic

Energies, 2019, vol. 12, issue 8, 1-26

Abstract: This paper deals with the use of least mean squares (LMS, NLMS) and recursive least squares (RLS) algorithms for total harmonic distortion (THD) reduction using shunt active power filter (SAPF) control. The article presents a pilot study necessary for the construction of our own controlled adaptive modular inverter. The objective of the study is to find an optimal algorithm for the implementation. The introduction contains a survey of the literature and summarizes contemporary methods. According to this research, only adaptive filtration fulfills our requirements (adaptability, real-time processing, etc.). The primary benefit of the paper is the study of the efficiency of two basic approaches to adaptation ((N)LMS and RLS) in the application area of SAPF control. The study examines the impact of parameter settings (filter length, convergence constant, forgetting factor) on THD, signal-to-noise ratio (SNR), root mean square error (RMSE), percentage root mean square difference (PRD), speed, and stability. The experiments are realized with real current and voltage recordings (consumer electronics such as PC source without power factor correction (PFC), HI-FI amplifier, etc.), which contain fast dynamic transient phenomena. The realized model takes into account a delay caused by digital signal processing (DSP) (the implementation of algorithms on field programmable gate array (FPGA), approximately 1–5 ?s) and a delay caused by the reaction time of the proper inverter (approximately 100 ? s). The pilot study clearly showed that the RLS algorithm is the most suitable for the implementation of an adaptive modular inverter because it achieved the best results for all analyzed parameters.

Keywords: shunt active power filter (SAPF) control; least mean squares (LMS) algorithm; normalized least mean squares (NLMS) algorithm; recursive least square (RLS); total harmonic distortion (THD); control methods for SAPF; non-linear load; higher harmonic components (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/8/1545/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/8/1545/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:8:p:1545-:d:225502

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1545-:d:225502