Transient Analysis and Execution-Level Power Tracking Control of the Concentrating Solar Thermal Power Plant
Xiufan Liang and
Yiguo Li
Additional contact information
Xiufan Liang: Key laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
Yiguo Li: Key laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
Energies, 2019, vol. 12, issue 8, 1-17
Abstract:
Concentrating solar power (CSP) is a promising technology for exploiting solar energy. A major advantage of CSP plants lies in their capability of integrating with thermal energy storage; hence, they can have a similar operability to that of fossil-fired power plants, i.e., their power output can be adjusted as required. For this reason, the power output of such CSP plants is generally scheduled to maximize the operating revenue by participating in electric markets, which can result in frequent changes in the power reference signal and introduces challenges to real-time power tracking. To address this issue, this paper systematically studies the execution-level power tracking control strategy of an CSP plant, primarily aiming at coordinating the control of the sluggish steam generator (including the economizer, the boiler, and the superheater) and the fast steam turbine. The governing equations of the key energy conversion processes in the CSP plant are first presented and used as the simulation platform. Then, the transient behavior of the CSP plant is analyzed to gain an insight into the system dynamic characteristics and control difficulties. Then, based on the step-response data, the transfer functions of the CSP plant are identified, which form the prediction model of the model predictive controller. Finally, two control strategies are studied through simulation experiments: (1) the heuristic PI control with two operation modes, which can be conveniently implemented but cannot coordinate the control of the power tracking speed and the main steam parameters, and (2) advanced model predictive control (MPC), which overcomes the shortcoming of PI (Proportional-Integral) control and can significantly improve the control performance.
Keywords: CSP plant model; transient analysis; power tracking control; two-tank direct energy storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/8/1564/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/8/1564/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:8:p:1564-:d:225713
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().