Concatenate Convolutional Neural Networks for Non-Intrusive Load Monitoring across Complex Background
Qian Wu and
Fei Wang
Additional contact information
Qian Wu: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
Fei Wang: School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
Energies, 2019, vol. 12, issue 8, 1-17
Abstract:
Non-Intrusive Load Monitoring (NILM) provides a way to acquire detailed energy consumption and appliance operation status through a single sensor, which has been proven to save energy. Further, besides load disaggregation, advanced applications (e.g., demand response) need to recognize on/off events of appliances instantly. In order to shorten the time delay for users to acquire the event information, it is necessary to analyze extremely short period electrical signals. However, the features of those signals are easily submerged in complex background loads, especially in cross-user scenarios. Through experiments and observations, it can be found that the feature of background loads is almost stationary in a short time. On the basis of this result, this paper provides a novel model called the concatenate convolutional neural network to separate the feature of the target load from the load mixed with the background. For the cross-user test on the UK Domestic Appliance-Level Electricity dataset (UK-DALE), it turns out that the proposed model remarkably improves accuracy, robustness, and generalization of load recognition. In addition, it also provides significant improvements in energy disaggregation compared with the state-of-the-art.
Keywords: non-intrusive load monitoring; energy disaggregation; deep learning; source separation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/8/1572/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/8/1572/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:8:p:1572-:d:225882
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().