EconPapers    
Economics at your fingertips  
 

Design of an Adaptive Power Management Strategy for Range Extended Electric Vehicles

Jen-Chiun Guan, Bo-Chiuan Chen and Yuh-Yih Wu
Additional contact information
Jen-Chiun Guan: Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
Bo-Chiuan Chen: Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
Yuh-Yih Wu: Department of Vehicle Engineering, National Taipei University of Technology, Taipei 10608, Taiwan

Energies, 2019, vol. 12, issue 9, 1-24

Abstract: The cruising distance of the range extended electric vehicle (REEV) can be further extended using a range extender, which consists of an engine and a generator, i.e., a genset. An adaptive power management strategy (PMS) based on the equivalent fuel consumption minimization strategy (ECMS) is proposed for the REEV in this paper. The desired trajectory of the state of charge (SOC) is designed based on the energy-to-distance ratio, which is defined as the difference between the initial SOC and the minimum allowable SOC divided by the remaining travel distance, for discharging the battery. A self-organizing fuzzy controller (SOFC) with SOC feedback is utilized to modify the equivalence factor, which is defined as the fuel consumption rate per unit of electric power, for tracking the desired SOC trajectory. An instantaneous cost function, that consists of the fuel consumption rate of the genset and the equivalent fuel consumption rate of the battery, is minimized to find the optimum power distribution for the genset and the battery. Dynamic programming, which is a global minimization method, is employed to obtain the performance upper bound for the target REEV. Simulation results show that the proposed algorithm is adaptive for different driving cycles and can effectively increase the fuel economy of the thermostat control strategy (TCS) by 11.1% to 16%. The proposed algorithm can also reduce average charging/discharging powers and low SOC operations for possibly extending the battery life and increasing the battery efficiency, respectively. An experiment of the prototype REEV on a chassis dynamometer is set up with the proposed algorithm implemented on a real-time controller. Experiment results show that the proposed algorithm can increase the fuel economy of the TCS by 7.8% for the tested driving cycle. In addition, the proposed algorithm can reduce the average charge/discharge powers of TCS by 7.9% and 11.7%, respectively.

Keywords: range extended electric vehicle; genset; adaptive power management strategy; equivalent fuel consumption minimization; equivalence factor; dynamic programming (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/9/1610/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/9/1610/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:9:p:1610-:d:226540

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1610-:d:226540