Fast Track Integration of Computational Methods with Experiments in Small Wind Turbine Development
Michal Lipian,
Michal Kulak and
Malgorzata Stepien
Additional contact information
Michal Lipian: Institute of Turbomachinery, Lodz University of Technology, 90924 Lodz, Poland
Michal Kulak: Institute of Turbomachinery, Lodz University of Technology, 90924 Lodz, Poland
Malgorzata Stepien: Institute of Turbomachinery, Lodz University of Technology, 90924 Lodz, Poland
Energies, 2019, vol. 12, issue 9, 1-13
Abstract:
In general, standard aerodynamic design is divided into two paths—numerical analysis and empirical tests. It is crucial to efficiently combine both approaches in order to entirely fulfill the requirements of the design process as well as the final product. An effective use of computational analysis is a challenge, however it can significantly improve understanding, exploring and confining the search for optimal product solutions. The article focuses on a rapid prototyping and testing procedure proposed and employed at the Institute of Turbomachinery, Lodz University of Technology (IMP TUL). This so called Fast Track approach combines preparation of numerical models of a wind turbine rotor, manufacturing of its geometry by means of a 3D printing method and testing it in an in-house wind tunnel. The idea is to perform the entire procedure in 24 h. The proposed process allows one to determine the most auspicious sets of rotor blades within a short time. Owing to this, it significantly reduces the amount of individual subsequent examinations. Having fixed the initial procedure, it is possible to expand research on the singled-out geometries. The abovementioned observations and the presented overview of the literature on uses of 3D printing in aerodynamic testing prove rapid prototyping as an innovative and widely-applicable method, significantly changing our approach to experimental aerodynamics.
Keywords: small wind turbine (SWT); rapid prototyping; wind tunnel; numerical flow analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/9/1625/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/9/1625/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:9:p:1625-:d:226840
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().