Prediction of the Optimal Vortex in Synthetic Jets
Soledad Le Clainche
Additional contact information
Soledad Le Clainche: E.T.S.I. Aeronáutica y del Espacio, Universidad Politécnica de Madrid, Pza. Cardenal Cisneros 3, 28040 Madrid, Spain
Energies, 2019, vol. 12, issue 9, 1-26
Abstract:
This article presents three different low-order models to predict the main flow patterns in synthetic jets. The first model provides a simple theoretical approach based on experimental solutions explaining how to artificially generate the optimal vortex, which maximizes the production of thrust and system efficiency. The second model is a data-driven method that uses higher-order dynamic mode decomposition (HODMD). To construct this model, (i) Navier–Stokes equations are solved for a very short period of time providing a transient solution, (ii) a group of spatio-temporal data are collected containing the information of the transitory of the numerical simulations, and finally (iii) HODMD decomposes the solution as a Fourier-like expansion of modes that are extrapolated in time, providing accurate predictions of the large size structures describing the general flow dynamics, with a speed-up factor of 8.3 in the numerical solver. The third model is an extension of the second model, which combines HODMD with a low-rank approximation of the spatial domain, which is based on singular value decomposition (SVD). This novel approach reduces the memory requirements by 70% and reduces the computational time to generate the low-order model by 3, maintaining the speed-up factor to 8.3. This technique is suitable to predict the temporal flow patterns in a synthetic jet, showing that the general dynamics is driven by small amplitude variations along the streamwise direction. This new and efficient tool could also be potentially used for data forecasting or flow pattern identification in any type of big database.
Keywords: reduced order model; prediction; data forecasting; HODMD; synthetic jets; soft computing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/12/9/1635/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/9/1635/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:9:p:1635-:d:227005
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().