EconPapers    
Economics at your fingertips  
 

Quantitative Inversion of Fixed Carbon Content in Coal Gangue by Thermal Infrared Spectral Data

Liang Song, Shanjun Liu and Wenwen Li
Additional contact information
Liang Song: School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Shanjun Liu: School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Wenwen Li: School of Geographical Sciences & Urban Planning, Arizona State University, Tempe, AZ 85287-5302, USA

Energies, 2019, vol. 12, issue 9, 1-17

Abstract: Fixed carbon content is an important factor in measuring the carbon content of gangue, which is important for monitoring the spontaneous combustion of gangue and reusing coal gangue resources. Although traditional measurement methods of fixed carbon content, such as chemical tests, can achieve high accuracy, meeting the actual needs of mines via these tests is difficult because the measurement process is time consuming and costly and requires professional input. In this paper, we obtained the thermal infrared spectrum of coal gangue and developed a new spectral index to achieve the automated quantification of fixed carbon content. Thermal infrared spectroscopy analyses of 42 gangue and three coal samples were performed using a Turbo FT thermal infrared spectrometer. Then, the ratio index (RI), difference index (DI) and normalized difference index (NDI) were defined based on the spectral characteristics. The correlation coefficient between the spectral index and the thermal infrared spectrum was calculated, and a regression model was established by selecting the optimal spectral DI. The model prediction results were verified by a ten times 5-fold cross-validation method. The results showed that the mean error of the proposed method is 5.00%, and the root mean square error is 6.70. For comparison, the fixed carbon content was further predicted by another four methods, according to the spectral depth H, spectral area A, the random forest and support vector machine algorithms. The predicted accuracy calculated by the proposed method was the best among the five methods. Therefore, this model can be applied to predict the fixed carbon content of coal gangue in coal mines and can help guide mine safety and environmental protection, and it presents the advantages of being economic, rapid and efficient.

Keywords: coal gangue; thermal infrared; fixed carbon content; quantitative inversion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/9/1659/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/9/1659/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:9:p:1659-:d:227542

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1659-:d:227542