EconPapers    
Economics at your fingertips  
 

Oscillating Heat Pipe Cooling System of Electric Vehicle’s Li-Ion Batteries with Direct Contact Bottom Cooling Mode

Ri-Guang Chi and Seok-Ho Rhi
Additional contact information
Ri-Guang Chi: Applied Thermal Engineering Lab, School of Mechanical Engineering, Chungbuk National University, 1 ChungDae-ro, SeoWon-gu, Cheongju, Chungbuk 28644, Korea
Seok-Ho Rhi: Applied Thermal Engineering Lab, School of Mechanical Engineering, Chungbuk National University, 1 ChungDae-ro, SeoWon-gu, Cheongju, Chungbuk 28644, Korea

Energies, 2019, vol. 12, issue 9, 1-14

Abstract: Recently, the use of electrical vehicles has abruptly increased due to environmental crises. The high energy density of lithium-ion batteries is their main advantage for use in electric vehicles (EVs). However, the thermal management of Li-ion batteries is a challenge due to the poor heat resistance of Lithium ions. The performance and lifetime of lithium ion batteries are strongly affected by the internal operating temperature. Thermal characterization of battery cells is very important to ensure the consistent operation of a Li-ion battery for its application. In the present study, the OHP (Oscillating Heat Pipe) system is proposed as a battery cooling module, and experimental verification was carried out. OHP is characterized by a long evaporator section, an extremely short condenser section, and almost no adiabatic section. Experimental investigations were conducted using various parameters such as the filling ratio, orientation, coolant temperature, and heat flux. Average temperature of the heater’s surface was maintained at 56.4 °C using 14 W with 25 °C coolant water. The experimental results show that the present cooling technology basically meets the design goal of consistent operation.

Keywords: Oscillating Heat Pipe; Li-ion battery cooling; electric vehicles; heat transfer; battery thermal management (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/9/1698/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/9/1698/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:9:p:1698-:d:228445

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1698-:d:228445