EconPapers    
Economics at your fingertips  
 

Sugarcane Bagasse Hydrolysis Enhancement by Microwave-Assisted Sulfolane Pretreatment

Patricia Portero-Barahona, Enrique Javier Carvajal-Barriga, Jesús Martín-Gil and Pablo Martín-Ramos
Additional contact information
Patricia Portero-Barahona: CLQCA, Neotropical Centre for the Biomass Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Avda. 12 de Octubre 1076 y Roca, Quito 170303, Ecuador
Enrique Javier Carvajal-Barriga: CLQCA, Neotropical Centre for the Biomass Research, School of Biological Sciences, Pontifical Catholic University of Ecuador, Avda. 12 de Octubre 1076 y Roca, Quito 170303, Ecuador
Jesús Martín-Gil: Agriculture and Forestry Engineering Department, ETSIIAA, Universidad de Valladolid, Avenida de Madrid 44, 34004 Palencia, Spain
Pablo Martín-Ramos: EPS, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Carretera de Cuarte, s/n, 22071 Huesca, Spain

Energies, 2019, vol. 12, issue 9, 1-15

Abstract: Sugarcane bagasse is the major by-product of the sugarcane industry and, due to its abundant availability, it has been extensively studied for lignocellulosic bioconversion in the production of bioethanol and other value-added commercial products. In the study presented herein, a combined pretreatment using sulfolane, TiO 2 and alkali microwave irradiation (MW-A) was assessed for the dissolution of lignin prior to enzymatic saccharification of holocellulose. Total reducing sugars (TRS) and saccharinic acid yields were investigated. The increase in NaOH concentration up to 5% and in temperature from 120 °C to 140 °C were found to have a positive influence on both yields. While increasing the reaction time from 5 to 60 min only led to an increase in TRS yield <2%, a reaction time of 30 min almost doubled the saccharinic acids production. TRS yields and saccharinic acid production were approximately 5% and 33% higher when the sulfolane-TiO 2 reaction medium was used, as compared to MW-A in water, reaching up to 64.8% and 15.24 g/L of saccharinic acids, respectively. The proposed MW-A pretreatment may hold promise for industrial applications, given the good TRS yields obtained, and the associated enzyme and time/energy savings. The use of sulfolane-TiO 2 reaction medium is encouraged if saccharinic acids are to be recovered too.

Keywords: enzymatic hydrolysis; microwave irradiation; NaOH; pretreatment; sulfolane; total reducing sugars (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/12/9/1703/pdf (application/pdf)
https://www.mdpi.com/1996-1073/12/9/1703/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:12:y:2019:i:9:p:1703-:d:228497

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1703-:d:228497