Changes in Wave Energy in the Shelf Seas of India during the Last 40 Years Based on ERA5 Reanalysis Data
M. M. Amrutha and
V. Sanil Kumar
Additional contact information
M. M. Amrutha: Ocean Engineering Division, CSIR-National Institute of Oceanography (Council of Scientific & Industrial Research), Dona Paula 403004, India
V. Sanil Kumar: Ocean Engineering Division, CSIR-National Institute of Oceanography (Council of Scientific & Industrial Research), Dona Paula 403004, India
Energies, 2019, vol. 13, issue 1, 1-23
Abstract:
Ocean wave energy is one of the cleanest renewable energy sources around the globe, but wave energy varies widely from place to place and from time to time. The long-term variability of wave power at 20 locations in the Indian shelf seas from 1979 to 2018 is described here using the European Centre for Medium-Range Weather Forecasts recently released ERA5 reanalysis hourly data. The variability is calculated on a yearly and monthly basis for the locations based on the coefficient of variation. The annual average wave power varied from 2.3 (at location 16 in the western Bay of Bengal) to 11 kW/m (at location 2 in the northeastern Arabian Sea). Along the western shelf seas, the maximum value of wave power is during the southwest monsoon period and along the east coast, it is during the tropical cyclone period. The standard deviation in wave power is more than the mean value at locations along the northern shelf seas of India, indicating a large variability in wave power in an annual cycle. The west coast locations are shown to have a slightly higher increasing trend with an average of 0.024 kW/m per year, while the increasing trend in wave power of east coast locations is with an average of 0.015 kW/m per year. The study also examines the variation in wave power from deep to shallow water at 2 locations using the wave characteristics obtained from the numerical model SWAN. The electric power output from a few wave energy converters are calculated for all the locations and found that the southernmost locations have a steady and higher percentage of power production.
Keywords: climate change; North Indian Ocean; ocean energy; renewable energy; wave energy converter; wave energy resource (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/1/115/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/1/115/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2019:i:1:p:115-:d:301802
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().