Distributed Optimization in Low Voltage Distribution Networks via Broadcast Signals †
Boyuan Wei and
Geert Deconinck
Additional contact information
Boyuan Wei: Department of Electrical Engineering (ESAT), Research Division Electa, KU Leuven, 3001 Leuven, Belgium
Geert Deconinck: Department of Electrical Engineering (ESAT), Research Division Electa, KU Leuven, 3001 Leuven, Belgium
Energies, 2019, vol. 13, issue 1, 1-18
Abstract:
With the development of distributed energy resources, the low voltage distribution network (LVDN) is supposed to be the integrator of small distributed energy sources. This makes the users in LVDNs multifarious, which leads to more complex modeling. Additionally, data acquisition could be tricky due to rising privacy concerns. These impose severe demands on control schemes in LVDNs that the classical centralized control might not be able to fulfill. To tackle this, a model-free control approach with distributed decision-making architecture is proposed in this paper. Employing statistical methods and game theory, individual users in LVDNs achieve local optimum autonomously. Comparing to conventional approaches applied in LVDNs, the proposed approach is able to achieve active control with less communication burden and computational resources. The paper proves the convergence to the Nash Equilibrium (NE) and uses player compatible relations to form the specific equilibrium. A variant of the log-linear trial and error learning process is applied in a novel “suggest-convince” mechanism to implement the proposed approach. In the case study, a 103 nodes test network based on a real Belgian semiurban LVDN is illustrated. The proposed approach is validated and analyzed with practical load profiles on the 103 nodes network. In addition to that, centralized control is implemented as a benchmark to show the performance of the proposed approach by comparing it with the classical optimization result. The results demonstrate that the proposed approach is able to achieve player compatible equilibrium in an expected way, resulting in a good approximation to the local optimum.
Keywords: low voltage distribution network; player compatible equilibrium; voltage control; active distribution network; Nash equilibrium; broadcast signals (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/1/43/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/1/43/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2019:i:1:p:43-:d:300018
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().