EconPapers    
Economics at your fingertips  
 

Controlled Impedance-Admittance-Torque Nonlinear Modeling and Analysis of Modern Power Systems

Panos C. Papageorgiou and Antonio T. Alexandridis
Additional contact information
Panos C. Papageorgiou: Department of Electrical and Computer Engineering, University of Patras, 26504 Rion-Patras, Greece
Antonio T. Alexandridis: Department of Electrical and Computer Engineering, University of Patras, 26504 Rion-Patras, Greece

Energies, 2020, vol. 13, issue 10, 1-27

Abstract: Modern power systems are continuously transformed into decentralized ones where distributed generation (DG) plays a key role. Almost all the different distributed energy resources (DERs) are connected in geographically dispersed places through controlled power electronic interfaces in a manner that essentially affects the dynamic performance and control of the whole power system. Simultaneously, rotating machines in power production or absorption, dominate the system response and stability. In this new frame, this paper proposes a novel generalized dynamic representation and full scale modeling of a modern power system based on the well-known impedance - admittance (IA) network model for the electricity grid, substantially extended to include in detail both the power converter devices by considering the controlled power electronic dynamics and the electrical machines by inserting their full electromechanical dynamics. This formulation results in a holistic nonlinear dynamic description, defined here as controlled impedance-admittance-torque (CIAT) model of the whole system which features common structural characteristics. The model is deployed in state space, involves all the controlled inputs in DG, namely the duty-ratio signals of each power converter interface, all the other external inputs affecting the system, namely all the known or unknown voltage, current, and torque inputs. As shown in the paper, the proposed CIAT model retains its fundamental properties for any DG and network topology, standard or varying. This enables the compression of the accurate analytic power system dynamic description into a matrix-based generic nonlinear model that can be easily used for analysis studies of such large-scale systems. Taking into account the nonlinear nature of the CIAT matrix-based model and the persistent action of the external inputs, Lyapunov methods deployed on recently established input to state stability (ISS) notions are systematically applied for the system analysis. Hence, the traditionally used small-signal model-based analysis that suffers from the intermittent and continuously changing operation of DERs is completely substituted by the proposed formulation. A modern power system example with different DERs involved is analyzed by this way and is extensively simulated to verify the validity of the proposed method.

Keywords: power system modeling; converter interface; electromechanical dynamics; DG models (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2461/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2461/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2461-:d:357703

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:13:y:2020:i:10:p:2461-:d:357703