The Schaake Shuffle Technique to Combine Solar and Wind Power Probabilistic Forecasting
Stefano Alessandrini and
Tyler McCandless
Additional contact information
Stefano Alessandrini: Research Applications Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80307-3000, USA
Tyler McCandless: Research Applications Laboratory, National Center for Atmospheric Research (NCAR), Boulder, CO 80307-3000, USA
Energies, 2020, vol. 13, issue 10, 1-18
Abstract:
One way to mitigate the variability of wind and solar power generation is to install the corresponding plants in nearby locations. For example, in Kuwait, the facility at Shagaya Renewable Energy Park is located in a desert area with both photovoltaic panels and wind turbines that allow the continuous generation of renewable energy throughout the day. The National Center for Atmospheric Research (NCAR) has developed a system to generate probabilistic wind and solar predictions for the Shagaya facility. These predictions are based on the analog ensemble technique that post-processes the wind speed and solar irradiance predictions based on a combination of multiple models including the Weather Research and Forecasting (WRF) numerical model. The ensemble forecasts have 20 members and are generated independently at each wind and solar power production facility. Here we present a method based on the Schaake Shuffle (SS) technique to pair the ensemble members from the independent systems to obtain a unique ensemble prediction of the aggregated wind and solar generation. After reordering through the SS technique, the corresponding paired solar and wind power members can be summed to build a unique ensemble of combined generation that is statistically consistent, as verified by the presented metrics.
Keywords: solar power forecasting; wind power forecasting; ensemble forecasting; analog ensemble; schaake shuffle; machine learning (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2503/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2503/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2503-:d:358844
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().