Interfacial Charge-Transfer Transitions for Direct Charge-Separation Photovoltaics
Jun-ichi Fujisawa
Additional contact information
Jun-ichi Fujisawa: Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
Energies, 2020, vol. 13, issue 10, 1-14
Abstract:
Photoinduced charge separation (PCS) plays an essential role in various solar energy conversions such as photovoltaic conversion in solar cells. Usually, PCS in solar cells occurs stepwise via solar energy absorption by light absorbers (dyes, inorganic semiconductors, etc.) and the subsequent charge transfer at heterogeneous interfaces. Unfortunately, this two-step PCS occurs with a relatively large amount of the energy loss (at least ca. 0.3 eV). Hence, the exploration of a new PCS mechanism to minimize the energy loss is a high-priority subject to realize efficient solar energy conversion. Interfacial charge-transfer transitions (ICTTs) enable direct PCS at heterogeneous interfaces without energy loss, in principle. Recently, several progresses have been reported for ICTT at organic-inorganic semiconductor interfaces by our group. First of all, new organic-metal oxide complexes have been developed with various organic and metal-oxide semiconductors for ICTT. Through the vigorous material development and fundamental research of ICTT, we successfully demonstrated efficient photovoltaic conversion due to ICTT for the first time. In addition, we revealed that the efficient photoelectric conversion results from the suppression of charge recombination, providing a theoretical guiding principle to control the charge recombination rate in the ICTT system. These results open up a way to the development of ICTT-based photovoltaic cells. Moreover, we showed the important role of ICTT in the reported efficient dye-sensitized solar cells (DSSCs) with carboxy-anchor dyes, particularly, in the solar energy absorption in the near IR region. This result indicates that the combination of dye sensitization and ICTT would lead to the further enhancement of the power conversion efficiency of DSSC. In this feature article, we review the recent progresses of ICTT and its application in solar cells.
Keywords: photovoltaic conversion; dye-sensitized solar cell; direct charge separation; interfacial charge-transfer transition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2521/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2521/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2521-:d:358850
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().