The Use of Generalized Gaussian Distribution in Vibroacoustic Detection of Power Transformer Core Damage
Robert Krupiński and
Eugeniusz Kornatowski
Additional contact information
Robert Krupiński: Department of Signal Processing and Multimedia Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland
Eugeniusz Kornatowski: Department of Signal Processing and Multimedia Engineering, Faculty of Electrical Engineering, West Pomeranian University of Technology, Sikorskiego 37, 70-313 Szczecin, Poland
Energies, 2020, vol. 13, issue 10, 1-14
Abstract:
Vibroacoustic diagnostics (VM—Vibroacoustic Method) is one of the methods for diagnosing the active part of power transformers. Measurement technologies have been refined over the past several years, but the methods of analyzing data obtained in VM diagnostics are still in development. In most cases, they are based on a simple frequency spectrum analysis, and the diagnostic conclusions are subjective and depend on the expert’s professional experience. The article presents an objective method for the detection of transformer unit core damage, based on the analysis of the statistical properties of the vibration signal registered on the surface of the tank of an unloaded transformer in the steady state of vibrations (VM). The algorithm for proceeding further is: FFT analysis of the vibroacoustic signal, with the determination of the relative changes in vibration power as a function of frequency P r ( f ) and, finally, the determination of the statistic properties of the dataset P r ( f ) . The Generalized Gaussian Distribution (GGD) is used to describe the P r ( f ) set. The detector output values are the λ and p parameters of the GGD distribution. These two numerical values form the basis for the classification of the technical condition of the transformer unit core. The correctness of the described solution was verified on the example of ten pieces of 16 MVA power transformers with different operating times and degrees of wear.
Keywords: generalized Gaussian distribution; transformer core; vibroacoustic method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2020
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/13/10/2525/pdf (application/pdf)
https://www.mdpi.com/1996-1073/13/10/2525/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:13:y:2020:i:10:p:2525-:d:358906
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().